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SUMMARY

This project (NAG 9-574) was meant to be a three-year research project. However, due to

NASA's reorganizations during 1992, the project was funded only for one year. Accord-

ingly, every effort was made to make the present final report as if the project was meant to

be for one-year duration. Originally, during the first year we were planning to accomplish

the following: (1) we were to start with a three-dimensional flexible manipulator beams

with articulated joints and with a linear control-based controllers applied at the joints;

(2) using this simple example, we were to design the software systems requirements for

real-time processing, introduce the streamlining of various computational algorithms, per-

form the necessary reorganization of the partitioned simulation procedures, and assess the

potential speed-up realization of the solution process by parallel computations.

The three reports included as part of the final report address: (1) the streamlining of

various computational algorithms; (2) the necessary reorganization of the partitioned sim-

ulation procedures, in particular the observer models; and (3) an initial attempt of recon-

figuring the flexible space structures. We wish to state that much of the real-time effort

via parallel computations will continue under a NSF grant as part of High Performance

Parallel Computing Initiative. Other two aspects also constitute important attributes for

real-time simulation of space operations. As such, they will also be pursued through other

grants in the near future.

We thank Dr. John Sunkel for encouraging us through the difficult period of what turned

out to be a short, intense yet productive endeavor.





9
Recent Developments in Time
Integration Methods for
Structural and Interaction

System Dynamics
K. C. Park

Universtly of Colorado at Boulder, USA

9.1 INTRODUCTION

This survey is a follow-up on earlier ones (Park [1]; Park and Felippa [2]; Felippa and
Park [3]; Park [4]) on direct time integration methods. The algorithmic characterization

of the integration formulae offered therein, namely, stability, accuracy and implement-
ation aspects, remains largely intact. Readers wishing to familiarize the algorithmic
characterization may refer to the references cited above plus Hughes and Belytschko
[51.

What we are about to cover herein reflects a steady shift of research thrusts in

computational dynamics since the mid-1980s, from discipline-oriented dynamics to
system-oriented dynamics, from sequential computations to parallel computations,
and from efficiency/accuracy concern to system model improvements/refine-

ments. The specific topics we survey in this chapter thus reflect their maturing stages;
these developments do not fit into a coherent theory or categorization at the present
time.

Since time integration algorithms have been presented within the context of linear
structural dynamics for most instances, first we report on computational methods for
non-linear multibody dynamics. Major challenges in the development of computational .... -: ....

SolvingLarge-scaleProblemsin Mechanics,Editedby M. Papadrakakis
(_ 1993JohnWiley&SonsLtd
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260 TIME INTEGRATION METHODS FOR SYSTEM DYNAMICS

methods for multibody dynamics analysis have been the conservation of both energy
and momentum, system constraint violations, and simulation speed. We will address
some of these issues.

The second topic we will report is methods for the solution of coupled-field
problems, primarily methods for control-structure interaction (CSI) problems. The
design, modelling, analysis and real-time operation of CSI systems are one of the

most intensely researched activities in recent years with applications ranging from
aeroelastic tailoring, vibration control of reflectors deployed in low-earth orbits, to

active vibration control of suspension systems. The third topic we will present is a
computational method for transient thermal-struchare interaction problems. This
technique is relevant to the analysis of the thermal response of high-speed transport
plane as well as integrated electronic chip thermal management problem.

9.2 SOLUTION TECHNIQUES FOR MULTIBODY DYNAMICS

The equations of motion for multibodies are characterized by two key features:

highly nonlinear kinematical relations and complex constraints. It is not the purpose
of this chapter to make an exhaustive survey of available solution techniques. Rather,
we will examine selected techniques that meet our needs: computer implementability,
adaptation to large-scale simulation, robustness and efficiency, in that order.

There are three aspects of solution techniques for multibody dynamics (MBD)

analysis. First, we must have at hand an efficient and accurate algorithm for updating
the kinematical quantities such as angular orientations, angular velocities. Second,
direct time integration of the equations of motion that correspond to the unconstrained
states of multibodies must be performed. Third, an accurate and efficient treatment
of constraints is essential if the numerical solution is to maintain the given holonomic
and nonholonomic constraints. In practice, the three aspects are intertwined so that

one must achieve a careful balance in the employment of three computational aspects.
As computer implementation of the three require different strategies, we will discuss
them separately first and bring them together in the solution procedures.

The numerical solution procedure for MBD systems which we describe herein is

termed a staggered ]V[BD solution procedure that solves the generalized coordinates in
a separate module from that for the constraint force (Park and Chiou [6]; Park et al.
[7, 8])- A major advantage of such a partitioned solution procedure is that additional

analysis capabilities such as active controller and design optimization modules can
be easily interfaced without embedding them into a monolithic program. The solution
of the equations of motion for constrained multibody systems, unlike typical structural
dynamics problems, must satisfy at each time step the system constraints, whether
holonomic or non-holonomic or time-specified manoeuvres. Because of this distinctive

requirement, the reliability and cost of a multibody analysis package can be strongly
affected by how efficiently and accurately the constraints are preserved during the
numericM solution stage.

=';'he _'s_:_m constraint forces can be either eliminated or retained depending upon
the compie_x_ties associated with the elimination process. In general, it is preferable

to _am ._he constraint degrees of freedom if they are associated only with open
rigid lir_c,s. On the other hand, if external torque or active control devices are
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attached to those joints, it is computationally more advantageous to solve the
constraint forces (or Lagrange multipliers) simultaneously together with the general-

ized coordinates. Unfortunately, a straightforward way of computing the Lagrange
multipliers can often lead to an unacceptable level of errors. The task of minimizing
the propagation error due to violations of the constraint conditions is known as
stabilization. We will describe a particular constraint stabilization which recasts the

algebraic constraint conditions to a set of parabolic differential equations such that
the constraint forces can also be integrated in time.

To solve for the generalized coordinates of the multibody system, the equations
of motion are partitioned according to the translational and the rotational coordinates.
This sets the stage for an efficient treatment of the rotational motions via the

singularity-free Euler parameters. The translational part of the equations of motion

is integrated via a standard central difference algorithm. The rotational part is treated
by a modified central difference algorithm in order to preserve the discrete angular
momentum. Once the anguIar velocities are obtained, the angular orientations are
updated via the mid-point implicit formula employing the Euler parameters.

When the two algorithms, namely, the modified central difference algorithm for
the rotational coordinates and the implicit staggered procedure for the constraint
Lagrange multipliers, are brought together in a staggered manner, they constitute a
staggered explicit-implicit procedure as detailed below.

9.2.1 Equations of motion for multibody systems

To motivate ourselves for the development of solution procedures for the multibody
dynamics problems, let us introduce the following equations of motion:

(l)(d, _1)= 0 (9.2)

where M is the system mass matrix, (1 is the generalized velocity vector, u is the
translational degrees of freedom, ca is the angular velocity vector, B = c3q_/ad is the
constraint projection matrix, _ is the constraint force vector, (I) are the constraint
conditions that are imposed either on the subsystem boundaries or on the kinematical
relations among the generalized coordinates, t is the time, (') denotes time

differentiation, and Q is the generalized applied force plus non-linear inertia forces.
We observe from (9.1) and (9.2) that the task for solving the governing

multibody dynamical equations constitutes three computational procedures: accurate
computations of the constraint force, _., or their elimination from the equations of ............
motion (9.I), updates of the angular orientations, and the direct integration of the
translational displacement u. To this end, we will first examine two distinctive ways
of handling _..
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9.2.2 Techniques for handling constraint condillons

In principle, it is better to eliminate the constraint conditions, if possible, if the
corresponding forces are not needed for design or interface with other analysis
modules. For example, if the system consists of open-tree configurations and no
active controller is applied, then it is best to eliminate the joint constraint attributes.

On the other hand, when the system includes multiple dosed-loop configurations or
active controllers are present on several joints, then it becomes important to compute
the Lagrange multipliers as accurately as possible.

First, one can easily eliminate the system constraint forces via a coordinate

partitioning strategy whenever any or all of the system components possess an
open-tree topology. In the second procedure, we present a stabilization procedure
for solving the Lagrange multipliers, A distinct feature of this stabilization procedure
is that it can be implemented in a stand-alone module, thus can be interfaced not

only with the equation solver for rigid-body systems but with that for flexible-body
systems as well.

Parallel implementation of coordinate porfltioning technique

In this technique, a projection matrix that spans the null space of the constraint
Jacobian matrix (I), is first constructed (see, e.g., Wehage and Haug [9]). A parallel
methodology (Chiou [10]; Chiou et al. [11]) based on an arrowhead algorithm then
can be applied to the resulting complementary set of equations of motion. We will
present the procedure for open-tree systems. For a system that contains dosed loops,
a cut-joint technique can be used so that the present scheme can be equally applied.

Let us introduce a projection matrix A such that, when its transposed matrix acts
on the constraint force B r 3., it gives

A -rBT_. = O. (9.3)

This projection matrix can be obtained by expressing the total generalized velocity
d r = (ti Tmr) in terms of the independent velocities clf and their time derivatives
as

cl = A,:t/, _1= Ad f + A_!t. (9.4)

Due to the property of (9.3), premultiplying the equations of motion (9.1) by A r
yields

A'-Md = ArQ. (9.5)

In conventional procedure, _! in the above equation is replaced by (9.4b) and a f
is then solved from the reduced equations of motion. In the solution to be described

below, instead of solving the reduced equations of motion, we augment (9.4b) to
(9.5) to form an arrowhead matrix equation:

-ArQJ
(9.6)
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(9.7)

where n is the total number of bodies in the system. Decomposed in a manner

convenient for parallel computations, one obtains

M_ + Dcj..+a,a r = gj,

_ D(. + ,.,_a, = g'

where

j _ I ..... n

(9.s)

Dr. + ,.i, = -- _ ATMj' D(j..+,, = -- MjA i.
j=t i=l

j--I ..... n

gj = (MA_t/)_, j = 1..... n, g[ = _ _ ATQ.
j=l

Each diagonal submatrix Mj represents the local mass matrix which is decoupled
and can be factorized concurrently. An off-diagonal submatrix Dtj.,+, denotes the
coupling between connecting bodies in the system. Since M is a constant matrix,
(9.8) becomes

aj = M 7 '(Do. . + ,_cl! -- g). (9.9)

Substituting (9.9) into (9.8b) gives a form of Schur complement:

O,.+,.,,M,-'D,,..+,,a'= D,.+,.,,M,-' Q,- D,.÷,.,Aa'.
j=i ]=i i=x

(9.10)

The preceding treatment of the reduced equations of motion provides several
parallel computational features• First, the parallelism can be exploited by mapping

..................... each processor onto a group of bodies so that independent computations such as ..........
the left-hand side of (9.10) can be performed concurrently. Second, since M is a
constant mass matrix, it needs to be factored only once. Third, to solve for ci/, a
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parallel sparse solver may be utilized. Finally, once a r is obtained, computations of
from (9.4) is also easily parallelizable.

Stabilization of constroint violotions

When the Lagrange multipliers cannot be eliminated or are to be retained for other
purposes, one must solve for them. It has been known for some time that a

straightforward direct time integration of the governing differential equation (9.1),
augmented with a linearized form of the system constraints (9.2), often incur

unacceptably high errors in the numerical solution. Of several techniques proposed
to date, perhaps the method proposed by Baumgarte [12, 13] is the earliest known
stabilization technique for computing the constraint forces.

While the method due to Baumgarte works relat_ely well, it requires an a/mort"
determination of stabilization parameters and the method breaks down when the

number of independent system constraints change due to varying configurations. To
cope with the varying system constraints without experiencing singularities, a
penalty-based stabilization has been developed in Park and Chiou [6]. The penalty
procedure recasts the constraint equation in the form

8 (9.ii)

as the basic constraint equations instead of (9.2) for both the holonomic and non-
holonomic constraint conditions. We then time-differentiate, for the holonomic case,
the above penalty-based equation to obtain:

- (9.12)

The numerical solution to the above companion differential equation is effected
as foi/ows.

The constrained equation of motion (9.1) is integrated once using the implicit
integration rule

_1"-": = _I"+ 8/i "÷_'_, _ = h
2

to ,,'ie_d

_,,- r_-a. ----. _M-'I (Q.+V, _ Br2.+v2) + _!'. (9.13)

This .expression is substituted into (9.12) to obtain the stabilized differential equation
for _ Lagrange multipliers
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8_."÷'': + _BM-tBT2. "÷''2 = _BM-_ Q "÷_'2 + B_I".

When the above equation is integrated once more with the trapezoidal rule, we
obtain the following discrete update for _.:

(el + c_'BM -1BT)_. "+112= _2" + r_ +l/a (9.14)

r_ +_:2 = c52BM-I Q "+':2 + _B_I". (9.15)

The solution procedure for _. presented above can now be invoked in a staggered
manner in conjuction with the generalized coordinate solver to be described below.

9.2.3 Time Integration of MBD equations of motion

Once J. is computed by the procedure in Section 9.2.2 or a when using the
partitioning algorithm, one still needs to compute ,:1,u and the angular orientations

and their parameters at each time step. This task is carried out by employing an
explicit-implidt transient analysis algorithm that exploits the special kinematical
relationships of the generalized rotational coordinates vs. the angular velocity,
namely, the Euler parameters. First, the integration of the translational coordinates
and the angular velocity is accomplished by the central difference formula. It should
be mentioned that the use of the central difference formula does impose a step-size
restriction due to its stability limit (cam,xh <_ 2) where ¢o,_, is the highest angular
velocity of the system components for rigid-body systems or the highest frequency
of the entire flexible members for flexible-body systems. The simplicity of its
programming effort and robustness of its solution results can often become compelling
enough to adopt an explicit formula, which is the view taken here.

Explicittranslc_onal coordinate Integrator

In the conventional structural dynamics analysis, explicit time integration of the
equations of motion by the central difference formula involves the following two
updates per step:

6 "+''2 = h"-I'2 + hfi"

u "+I = u" + h6 "+l/_. (9.16)

Unfortunately, the same integrator is not directly applicable to the rotational part
of the equations of motion since ca is not directly integrable to yield the total
rotational quantities except for some special kinematic configurations. This motivates
us to partition d into the translational velocity vector, fi, which is directly integrable
and the angular velocity vector, ca, which is not, and treat them differently, viz.:
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(9.17)

The equations of motion can be written according to the above partitioning as

Eo:.JI:}-{oil (9.28)

where

Q_ I.f_, - D,(ca) S_(u, q) - B_ 2J
(9.19)

in which the subscripts (u, ca) refer to the translational and the rotational motions,

respectively, f is the external force vector, D is the generalized damping force
including the centrifugal force, S is the intemal force vector including member
flexibility, q is the anguIar orientation parameters, Bu and B= are the partition of the
combined gradient matrices of the constraint conditions (9.2).

First, assume that u "+u= and q,+Z/2 are already computed so that we can compute
ft,+ u- and _.+_/2:

.+,_,2J= M-' Q_, . (9.20)

Second. update the translational velocity at the step (n + 1) by

_'÷' = ti" + h/i "+uz. (9.21)

Third, we tm_clate the translational displacement, u, by

u--S_z= u.+U' + hti "+l. (9.22)

The updating of the angular orientations must be treated with care, and is described
below.

Updcrtfng of angular velocity via discrete angular momentum consetvatlon

In ord_" to update the angular velocity and angular orientations, we combine

judiciotm]y a momentum-conserving form of the central difference algorithm and the
mid-po/:nt /z_plicit rule for computing the Euler parameters as follows (Park and
Chiou _14D.

First. we retain the basic central difference formula for computing the angular



9.2 SOLUTIONTECHNIQUESFOR MUL11BODYDYNAMICS 267

velocity at the half steps:

co,+i/_ = co.-I/, + htb" (9.23)

where ¢b is computed from the equations of motion, utilizing the angular velocity

obtained from the discrete angular conservation law, as described shortly.
Second, co_+l, is used to integrate the Euler parameters by

 Io::lil = _ q = A(to)q (9.24)

where q = (qoql q, qY are the Eu]er parameters expressed in the body-fixed frame

and _ denotes the skew-symmetric angular velocity tensor given by

I 0..jt_ = Cos 0 -- co . (9.25)

-- COz (02 0

Implicit integration (9.24) by the mid-point rule yields

q"+' _ q" = hdl"+I,*= hA(co"+1:_)q"+v_

h
=-A(co"+z/2)(q.+_+ q')

2
(9.26)

where A(co "+v') can be viewed as the tangent matrix at the mid-configuration
whereas q,+iz, = (q,+_ + q')/2 is the mid-point average value. It was shown in Park
et al. [7] that q"+1 can be expressed as

+h 2
(9.27)

2where A = I + h2(co_+ (-°2 + co_)/4.

The updated Etder parameters q'+1
condition

are then normalized to satisfy the constraint

q.+_.q_+I= 1. (9.28)

Once q'+_ is available, the angular orientation at t "+_ is then obtained by
...................................

R "+_ = (2¢o - 1)I + 2_1_!r - 2qo_l, q = (q_q2q3)r (9.29)

where the superscript (n + 1) is omitted on q.
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Third, the angular velocity o_"÷_ that is needed to compute tb for the next step
integration is obtained via a discrete version of the angular momentum conservation
law:

M_,con+_ - M_,ca" = h'c"+m (9.30)

where M_, is the moment of inertia, o) is the angular velocity vector, and t is the

applied moment, all expressed in body-fixed frame at the configuration P, 0 _ k _< n.

For computational simplicity, we will choose k = 0, i.e. the initial configuration so
that (9.30) becomes

(R.+ 1)TM,,,ca. +I _ (R.)a-M,,,m. = h(R.+ 1,2)r¢+ u_ (9.31)

where the matrix R is the rotation transformation matrix from the inertial basis e to

the body fixed configuration b according to

b" --- R"e (9.32)

and M_, ca and z are now expressed in the superscript-indexed discrete b-bases.

Therefore. the discrete angular momentum equation (9.30) becomes

m"+_= Mg_R.+_ ((R.)_Mo, ca. + h(R"+U')TQ "+uz / (9.33)

where "r is replaced by Qe, from the lefthand side of (9.18).

It is noted that, whereas the standard difference formula (9.16) satisfies the linear

momentum conservation for constant and linearly varying Q_, (9.33) indicates that

the use of a common basis is essential for the conservation of angular momentum.

A similar approach was successfully utilized by Simo and Wong [15] in their
devdopment of a family of implicit algorithms.

Fourth. _he angular acceleration needed for the next time step (n + 1) is then
computed for each rigid body by

cb"_r = Mg' (Q.+I _ _.+_ M_,_.+,). (9.34)

Equations 9.23)-(9.34) constitute the present modified central difference algorithm
for integr-,,,_ng the rotational equations of motion in multibody systems. However,
as many _--="_gineeringmultibody systems involve both holonomic and nonholonomic

constrainS_ the computation of Q"+ uz is not as straightforward as (9.18) implies.
For a momentum-conserving implicit algorithm, the reader may consult Simo and

Wong _15!_ For applications of the preceding MBD procedures to flexible multibody
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dynamics, one may refer to Downer [16], Downer et al. [171 and Downer and Park

[18], who solve the flexible appendage deployment problem, among others. Finally,

other MBD recent approaches can be found in Hang and Deyo [191.

9.3 ALGORITHMS FOR CONTROL-STRUCTURE INTERACTION
SIMULATION

A second topic we should like to report in this survey is computational methods for
the simulation of dynamic response of structures that are subject to active control
forces. A general case of structural response under active control forces involves

both large-angle rigid motions as well as transient flexible vibrations. Engineering
examples indude the manoeuvring of robotic arms, satellite attitude changes,
deployment and vibration control of large space structures, and active vibration

suppression of rotating machinery and vehide suspension systems.
When relatively small size models are adequate for describing the predominant

motions and vibrations, the resulting active control strategies also can consist of a
small number of actuators and sensors. However, as the structural model needs to

be large due to the physical nature of the problem or due to the high-precision
requirement, so must be the size of the actuator/sensor numbers. It is for such large-
scale control-structure problems that the following simulation methodology has been
developed.

Specifically, simulation tasks for control-structure interaction (CSI) problems involve
several computational elements and discipline-oriented models such as structural

dynamics, control law synthesis, state estimation, actuator and sensor dynamics,
thermal analysis, liquid sloshing and swirling, environmental disturbances, and
manoeuvring thrusts and torques. Because each of these computational elements can
be large, it is usually not practical to assemble these computational elements into a
single set of equations of motion and perform the analysis in its totality, which will
be referred to as the simultaneous solution approach. First, the equation size of the
total system can be simply too large for many existing computers. Second, the
simultaneous solution by treaHng the coupled interaction equations as one system
may destroy the sparsity of the attendant matrices, thus requiring excessive
computations and storage space. Most important of all, any changes in the model
or in the computational procedures will engender significant modifications of the

required analysis software modules and hence require a painstaking software
verification effort.

In order to alleviate the aforementioned difficulties that exist in the simultaneous

solution approach, a partitioned solution procedure that takes the following consider-
ations into account has been developed. First, software development of any new
capability is costly and time-consuming; thus, if at all possible, it is preferable to
utilize existing single-field analysis modules to conduct the coupled-field interaction

.... analysis. Second, the tasks for model generation and methods development of each .....
field are best accomplished by relying on the experts of each single-field discipline.
In order to accommodate both the software considerations and the single-field

expertise, a partitioned (or divide-and-conquer} analysis procedure has been developed
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for control-structure interaction analysis for direct output feedback systems (Belvin

[20]; Park and Belvin [21]). The procedure abandons the conventional way of treating
the CSI problems as one entity. Instead, it treats the structure (or plant), the observer,
and the controller/observer interaction terms as separate entities. Thus, the CSI

problem is recognized as a coupled-field problem and a divide-and-conquer strategy
adopted for the development of a real-time computational procedure. It should be
mentioned that a similar concept has been successfully applied to other interaction
analyses such as fluid-structure interactions (Park et al. [22]), multi-structural interaction

systems (Park [23]; Felippa and Park [3]; Park and Fel/ppa [2]), earth dam and pore-
fluid interactions (Park [23]; Zienkiewicz et al. [24] and mu]tibody systems with
constraints (Park et al. [7]; Chiou [10]; Downer [16]).

The partitioned analysis procedure hinges on two software and computational aspects.
First, at each discrete time increment, the equations of motion for each discipline are
solved separately by considering the interaction terms as extemal disturbances or

applied forces. Second, when necessary, computational stabilization and accuracy
improvements are introduced through augmentations and/or equation modifications.

It is important to note that such partitioned solutions of each discipline equation can
be carried out on either a sequential or a parallel machine if certain message passing
and memory-conflict issues are handled appropriately.

9.3.1 Equations of motion for con#ol-slruc#ure interoctfon syslems

The discrete equations of motion for control-structure interaction systems may be
described by [25]

Structure: (a)

Sensor output: (b)

Estimator: (c)

Control force: (d)

Estimation error: (e)

where

M/_ + D_] + Kq = f + Bu + Gw

q(o)= qo, (i(o) =

z=Hx+v

 =A +Ef+Bu+L 7
= o

u = -- F_

r = z - +

(9.35)

and

X

H Hv] , L E
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° ' I o=I°l_M_IK _M_tD , M_IB , F= [F_ Fz].

In the preceding equations, M is the mass matrix, D is the damping matrix, K is
the stiffness matrix, f(t) is the applied force, B is the actuator location matrix, G is

the disturbance Iocation matrix, q is the generalized displacement vector, w is a
disturbance vector and the superscript dot denotes time differentiation. In (9.35b), z

is the measured sensor output. The matrix Hd is the matrix of displacement sensor
locations and FI_ is the matrix of velocity sensor locations. The vector v is
measurement noise. The state estimator in (9.35c) is assumed to be based on either

the Kalman filter (Kalman and Bucy [26]) or a Luenberger observer [27] if the system

is deterministic. The superscript- denotes the estimated states. The actuator output,
u, is a function of the state estimator variables, _1and _l, and F_ and F2 are control
gains determined for example by pole-zero placement or from the solution of an
optimal control problem. The observer is governed by L, the filter gain matrix. For
the special case where L_ is the null matrix (i.e. _l = _, a second-order state estimator
can be expressed as

M_ + D_l + Kfi = f + Bu + MLz_. (9.36)

The effect of the above simplification on the observer stability and convergence is
discussed in detail in Belvin [20] and Belvin and Park [28].

9.3.2 Simultaneous solution approach

The numerical solution of (9.35) by the simultaneous solution approach begins with
appropriate initial conditions, the feedback gain F and the filter gain L. The structure
equation is written in first-order form

= Ax + Ef + gu + _,w (9.37)

where

The control gains and observer gains can be synthesized independently by noting
that the stability of the structural system and the observer error stability are
uncoupled. Introducing the error equatio n by _the_deterministic form (9.35) as

(9.38)
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and eliminating u yields

(9.39)

The stability of (9.39) is governed by the stability of [A -- BF] and [A -- LH].
Thus, the control gain F is suitably chosen from the matrix [A- BF] and the
observer gain L from the matrix [A -- LH].

Subsequently, the simultaneous solution approach eliminates u and z from (9.35a, c)
and then solves the observer based dosed-loop equations

f t:E.A ;::..J{:t+f:t,+{o t (9.40)

The embedding effects of both the controller and the state observer result in an

unsymmetric and non-sparse system matrix of dimension (4N by 4N), where N is

the number of structural degrees of freedom. Solution of (9.40) would require
considerable software modifications of existing structural dynamics analysis programs
for large-scale CSI simulation purposes. In addition to losing the computational
advantages associated with the finite element based CSI equation, the simultaneous
solution approach requires the control law to be embedded into the observer model.
If the control law includes actuator, sensor and/or controller dynamics, additional
states must be added to the observer. This greatly complicates the observer model

and requires significant software development for each class of control law dynamics.
The difficulties associated with the simultaneous solution approach have prompted
development of a partitioned solution approach for the CSI equations as described
below.

9.3.3 Sfabilization for computations of control force and estimation
error

The partitioned solution procedure numerically integrates the structural equations of
motion (9.35a) and the observer equation (9.35c) by treating the control force u and
the estimation error }, as if they were applied terms in the right-hand sides. In this

way, simulation of control-structure interaction systems using the partitioned solution
procedure can be carried out by a judicious employment of three software modules:
the structumi analyser to obtain q, the state estimator to obtain _1,and the stabilized

solver for the control force u and the state estimation error _,. Thus the partitioned
procedure becomes computationally efficient and can preserve software modularity
by ex'ploiting the symmetric matrix form on the left-hand sides of (9.35a) and (9.35c).

However. computations of the control force u and the state estimation error _, by
(9.35d) and 9_35e), respectively, can not only lead to an accumulation of errors but

oft_-, can gb.'e rise to numerical instability. Hence, in order to make the partitioned
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solution procedure robust, it is imperative to stabilize the partitioned solution process
and/or numerically filter the solution errors in computing u and 7. This is addressed
below.

First, we time-differentiate (9.35c) to obtain

a = (9.41)

Substituting _ from (9.36) into the above equation, one obtains

+ F2M-'Bu = - F2(M-'_ + L27) -- F,_l (9.42)

where the generalized rate of momentum 1_is given by

= (f - D_1 -- K?t). (9.43)

The parabolic stabilization that led to equation (9.42) for computing the control
law is sometimes called an equation augmentation procedure as it has not altered

any part of the basic governing equation (9.35) except one time-differentiation of u

assuming h exists. However, this assumption is later removed through time
discretization as will be shown later in the chapter.

It is noted that the homogenous part of (9.42) has the filtering effect of the form

(sI + F2M-_B) -_ in parlance of classical control theory, where s is the Laplace
transform operator, thus achieving the required stabilization. From the computational
viewpoint, although F2M-_B is in general a full matrix, its size is relatively small,
as the size of u is proportional to the number of actuators placed on the structure.

Similarly, for the observer estimation error ? one can stabilize its computation
first by time-differentiating it

+ HoLz7 = z -- ffIdp + Hoq). (9.44)

and substituting the observer equation into the above to obtain an augmented form
of the observer error equation:

_,H_L,}, = _ - H,,M-'(_ + Bu) - Hd_l. (9.45)

9.3.4 Stabilized partitioned equations and solution process

........ The adoption of the second-0rder observer and the preceding stabilization thus
replaces (9.35c), (9.35d) and (9.35e) by (9.36), (9.43) and (9.45), respectively, as
summarized below.
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Structure: (a) M/]+D/l+Kq=f+Bu+Gw

q(0) = qo, ci(0) = _0

Sensor output: (b) z = Hx + v

Estimaton (c) M_1 + D_l + K_ = f + Bu + MLz_' (9.46)

_(o) = o, ,_o) = o

Control force: (d) ti + F,M-' Bu = -- Fz (M-' _ + Lzy) -- F, _l

Estimation error: (e) _ + HoL2_ = _ -- HoM -x (_ + Bu) -- Hd_l

Note that _he difference between the original governing equation set (9.35) and the
above stabilized set (9.46) is an obstacle to computation of the control forces and
the state estimation error vector.

9.3.5 Sfabilily and accuracy of pat#tioned solution procedure

Computational stability analysis of partitioned procedures for a general coupled
system is still in an evolving stage. Hence, the analysis herein applies the relevant
results from (Belvin [20]; Park and Belvin [21]) in the present stability analysis of the
partitioned CSI solution procedure. The partitioned CSI solution procedure presented
in (9.46), even when discretized by unconditionally stable implicit time integration
formulae, may still suffer from computational instability as it involves extrapolations
to obtain u"+ !/2 and _+ i/_. A complete stability analysis of the partitioned solution

procedure for the coupled structural dynamics, observer and controller equations is
difficult to perform unless the observer characteristics H, L and the controller
characteristics B, F are specified. Hence, the analysis that follows is restricted to an
ideal observer, i.e. y = 0. In what follows, it is assumed that all of the stabilized

equation set is time-discretized by a mid-point version of the trapezoidal rule.
In order to assess the computational stability of the present partitioned solution

procedure, we construct a model single degree-of-freedom interaction equation as
follows. First, neglecting structural damping a modal structural equation of motion
can be expressed as

+ cozy = -- u (9.47)

where y is a generalized coordinate and co is its associated frequency.
Second, the model controller is assumed to consist of both the position and

velocity feedback with appropriate weights given by

u = r/coI y + _CO,_, corn,. _ co, _ coW (9.48)

where co, is the feedback frequency, which ranges from the minimum to the maximum
of the structural frequency contents, and r/and _ are positive scalar coefficients that

signify the strength of the position and the velocity feedback, respectively.
Combining (9.47) with the stabilized form of (9.48) we have the model interaction

equah_on as
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+ COZy---- -- u
(9.49)

Thus, the model interaction equations given by (9.49) represent the case of full state
feedback. They do not, however, reflect the mode-to-mode coupling that can occur
in reduced-order feedback controller. Nevertheless, an analysis of the computational
stability using the above model interaction equations should shed insight on the
overall stability of the present partitioned solution procedQre.

Time integration of the above model problem (9.49) by the mid-point rule

x "+l" = x" + _:_.+I/2

i.+,/z = :r"+ 6:r"+':a (9.50)

X "+I = 2_ "+I/2 -- X"

with 7 = 0 yields

_+'" = _' + 6¢'

(1 + _0,)u; +''_ = (_co,_ - _co,¢o') ¢,+,'" + _co,¢'

(I + 6_2)V'+"_ = - 6_u"+1'2+ ¢' + 67

¢'+' = 2¢ +''_ - ¢, f_+"_ = _+_'_ - ¢9/6, ¢+x = 2f_+,,__ _,

(9.5I)

where _+_/2 is a stable predictor that is needed to initiate the staggered solution.

Computational stability of the above difference equation can be assessed by
seeking a non-trivial solution in the form

such that

121_<1

for stability.

Substituting (9.52) into (9.51) and eliminating t), one obtains

,{;10
where

6"(2 + I)_ (1 + 6'co2)(2 + I)'- 42 "

(9.52)

(9.53)

(9.54)
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In order to test the stability requirement (9.53) on the characteristic equation, i.e.,
detlJ] = O, one transforms ]2] _< I into the entire left-hand plane of the z-plane by

I+z
_. = _, ]2] _< I ,_ Re(z) < O. (9.55)

I--Z

Carrying out the necessary algebra we have from detlJ(z) I = 0 the following z-
poIynomial equation:

(5"{co,co_ - 5_co_ + I)z_ + (5{co,)z + 5_(r/co_+ _=) = o. (9.56)

A test of the polynomial equation (9.56) for possible positive real roots by the
Routh-Hurwitz criterion (Ganthrnacher [29]) indicates that the partitioned procedure
as applied to the model coupled equations (9.47) and (9.48) give a stable solution
provided

(_sCcocco2- _2,tco_ + 1) > 0. (9.57)

Note that, if there is no position feedback (i.e., r/= 0), the model interaction equations
solved by the present partitioned solution procedure (9.46) yields unconditionally
stable solutions as (9.57) is automatically satisfied. Hence, a more critical stability

assessment can be made by assuming no velocity feedback (i.e. _ = 0) for which we
have for stability from (9.57)

2

h < x//_co /
(9.58)

The preceding stability analysis on the model interaction equations permits us to
make the following observations. First, equation (9.58) indicates that feedback
frequency (co,) and the strength of the position feedback (r/) dictate the computational
stability and not the structural frequency (co). In other words, the position feedback
dictates the allowable step size for stability. Thus the highest frequency of the
controller governs stability, not the highest frequency of the structure. Since most
controllers are designed with reduced order structure models that ignore high
frequency dynamics, the present solution procedure is not unduly restricted by
stability. Second, if velocity feedback is present, the allowable step size for stability
increases until _ _> v/(4r/3/27), at which point the solution becomes unconditionally
stable.

It should be noted that, instead of the stabilized form of control force equation
(9.46d) or (9.49b), if the scalar form of (9.48) is used in the preceding stability
analysis, the resulting stability limit is given by

(9.59)
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Assuming _ << I, the first term in the above condition allows a sufficiently large step

size. However, since l/r/_, I for a balanced control law, it imposes a step-size
restriction h _ 2/co c, which approaches the limit imposed on by a typical explicit
integration formula. This proves the advantage of the present stabilized partitioned
solution equation (9.46) solely from the computational stability viewpoint.

Although not elaborated herein, a stability analysis that includes an observer

model and the state estimation error equation has been conducted with the following
parameter choices:

in conjunction with the structural model and the controller model already used in
(9.49). The analysis result yields the following step-size restriction:

\ coc,¢qcoc
(9.61)

It should be noted that l_i corresponds to the Kalman filter gain magnitude which
can be adjusted to be sufficiently small compared with co2 as can be assessed from

equation (9.39b). Hence, provided 121< co,, the condition given by (9.58) is seen to
govern the maximum stable step size by the present partitioned solution procedure.

For the general multidimensional case governed by (9.46), one observes that the
stiffness proportional control force in practice reaches only a fraction of the total

internal force (u = r/Kq, r/<< I). Hence, even for a distributed stiffness proportional
control configuration where co__ co_,_, the stable step size given by (9.58) should
be much larger than the maximum stable step size of a typical explicit integration
algorithm (say, h._ x <: 2/co,_). Therefore, the computational efficiency of the present
partitioned solution procedure is established.

9.4 SOLUTION METHODS FOR COUPLED THERMAL-STRUCTURAL
ANALYSIS

Coupled thermal-structural problems are becoming a major challenge in many
engineering disciplines such as supersonic planes, satellites, superelectronic chips, and
jet and combustion engines. Following the finite element formulations proposed by
Wilson and Nickeil [30], Nickell and Sackman [3I], Oden [32], and Oden and

Armstrong [33], among others, the semidiscrete coupled thermal-structural governing
equations can be written as

M/i+D_+Ku--C0 =f

QO + HO + O°CTIJ. = r
(9.62)

where M, D and K are the mass, damping and stiffness matrices, and f is the
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prescribed structural loading vector; Q, H and C are the heat capacitance, heat
diffusion and thermal expansion coupling matrices, and r is the external heat source,
respectively; and 00 is the reference temperature.

9.4.1 Conventionol implicff solution procedures

Suppose we are given two software modules, a structural analyser and a thermal

conduction transient analysis module and are tasked to perform the coupled response
analysis given by (9.62). The simplest way is then to move the coupling terms C0
and cT, ",in the above equation to the right-hand sides and treat them as if they are an
applied force and an additional source term, respectively. This will permit the use of

two single disciplined-oriented software modules for the analysis of coupled problems.
Computationally, this amounts to employing the following staggered solution procedure:

M/i.+I/z + Dfi.+i/, + Ku.+i/, = f.+i/z + C_+I/2

QR '+I/2 + H0 -+I/2 = d,+i/z __ OoCT{.I n+I/2

(9.63)

where 8".+ *:"is the predicted temperature. It turns out that if CV_"+1/, is predicted instead
of 0 "+bz, one ends up with the same accuracy and stability limits (Park
et al. [22]).

While the above implicit-implidt staggered procedure is simple to implement, it can
be shown that it is only conditionally stable, even though the implidt integrators used
to integrate the left-hand sides of (9.62) are algorithmically unconditionally stable. The
stabilization procedure that we will describe is a mid-point rule modification of Farhat et
a/. [34]).

9.4.2 Sfobilizolion of implicff-implicff stoggered solution procedure

Stabilization of a general staggered solution procedure for coupled-field problems can be
accomplished either by a differential-level stabilization and algebraic-level stabilization.

In the past both stabilization strategies have been employed for fluid-structure problems,
coupled pore fluid-soil interactions, and structure-structure interaction problems (Park
et al. [22]; Park [23]; Felippa and Park [3]; Park and Felippa [21).

In general one can stabilize the impIicit-implicit procedure by modifying both or
just one of the two field equations. A successful stabilization is the one that minimizes
the impact of stabilization in terms of software modification and computational
overhead. Of several stabilization strategies studied, a concurrent adaptation of both
differential and algebraic-level augmentations was found to yield the most attractive
staggered procedure. We now outline the stabilization process.

First, we employ a mid-point version of the trapezoidal rule as
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_,,,+I/z _ _,,, _}_C_,,,+ I/z

y.+U, = y. + _/.+I12

y.+l = 2y.+la --y.

/,.+, = _/,.

(9.64)

where y can be either the displacement or the temperature vector in (9.62) and a is
one-half of the step size, a = 1/2At, and At is the time step size.

Second, time discretization of the thermal coupled equations (9.62b) to obtain

(Q + aH)0"+la = ar"+u2 + QO" - 6OoCV""+_/2. (9.65)

Note that in the above difference equation, the unknown structural coupling term is
associated with the velocity/t "+ lz2. It is this vector that has been found to play a
key role in stabilization of the present procedure. In order to stabilize the extrapolation
of the coupling term, we utilize an integrated form of ,.,,+m from the structural
equation (9.6Ia):

6"+u2 = B [Mh" + 6(f.+ua__Ku.+I/a+ Cg,+U_)l

B = (IV[+ 6D)-_.
(9.66)

Upon substituting the above expression into (9.65), we obtain

G0" + m = R"+ ,,a + a20oCTBK_+,a

R "+l/z = ar "+1/2 q- Q0" -- 60oCTB(IV[tl" "+- 6f "+112)

G = Q + 6H + 6z00CrBC

u;+lll = U n.

(9.67)

It is observed that the solution matrix G for the thermal equation is augmented with

the additional matrix c_z00CVBC and the prediction of _+u, is replaced by
6BKu_ +u'. Also, note that the predictor for u_+_a is simply the previous step
solution which has been found the most stable predictor when used in con-

junction with the trapezoidal rule (Park [23]).

Once the thermal equation is stabilized as described above, the structural equation

(9.62a) can be integrated in an existing structural analysis program as if the term C0
is an external force at each integration step. Time discretization of (9.62a) by the

mid-point rule (9.64) yields

Eu,+U2 = F.+I,a + a2C0"+I1_

..... E M + 6D + 6ZK ........... ....... (9.6-8)-..........

F "+m = a2f "+1,' + M(u" + aft") + aDu".
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The updating procedure for states at time step (n + I) is achieved as follows:

U_n+I = 2U n+I/2 _ ti n

_+I = 2(U"+''2 -- Un)/_-- 6"

07+_ = 20" +v2 _ O"

6"+' = M-,(f.+_ + C0? ÷_ _ D_ ÷__ K¢ +I)

ti"÷_= ti"+ _(ii"÷' +/i")

u"÷_ = u" + 6(6"÷_+ 6")

0 "+1 = Q-,(r.+, _ OoCrfi.+_ _ no7 +,)

o"÷I = o- + 6(0.÷, + 0").

(9.69)

9.4.3 An analysis of stab/lily and occurocy of Mobilized procedure

Stability of the staggered procedure presented in (9.67)--(9.69) can be assessed by
adopting an analysis procedure, for example, outlined in Park [4]. First, we assume
that the step-by-step numerical solution for a uniform step integration can be
characterized by

Y'+' = 2y-.

Hence, computational stability is maintained if

(9.70)

121_< I. (9.71)

In order to invoke the well-known Routh-Hurwitz criterion, we map the stable

zone. 121< I, onto the left-hand side of a z-plane by the following idempotenttransformation:

f++lIUnlti"+l | 6"
_i"÷' [ 1+3 ti" .

r+'[ =i-" o" (9.72)

Substitution of (9.70) and (9.72) into (9.67)-(9.69) with D = 0 yields

-- (I -- z2)_SZOoCTM-'K z2Q + zbH + c520oCTM-'C.J

characteristic equation is obtained from
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DetlMz z + VM6z = + 62(K + 0oCQ-ZC T + _:0oCQ-'CTM-'K)z

+ ¢53VKl= 0 (9.74)

where

V = CUC T

U = Q-'H(CTC) -I.

The reader may find a complete stability analysis in Farhat et aL [34]. Hence, we
offer the following synopsis. First, for a two-degree-of freedom problem, we have

M= 1, K=o92, Q=q, H=h, C=c (9.75)

which, when substituted into the above characteristic equation, gives

asz_ + a2z2 + alz + ao = 0 (9.76)

where

as I, a2 6q, a, 62[c02+-o-= = -- (I -I- 62092)], a0 = 63qCo2.
qm

Since 6, h, q, 092, 00, c2, and m > 0, all the coefficients of the polynomial (9.76) in z

are positive. Moreover, the quantity

a_a2 --aoa3 = Oohc263rn¢(1 + 62092)

is also positive, which demonstrates that the stabilized staggered solution procedure
is unconditionally stable for the 2-d.o.E model problem.

For multi-dimensional cases, the limiting case of K = 0, which gives rise to a
quadratically growing structural response due to thermal coupling, can be used as a
pathological test:

IMz2 + + 620oCQ-tCr I = 0. (9.77)

Since M is positive definite and the other two matrices are at least semi-definite, the
stabilized staggered procedure for this limiting case is unconditionally stable via
Bellman's theorem [351 as successfully utilized in Park [23]. Hence, we conclude that
the procedure given by (9.67)-(9.69) is unconditionally stable.

As for accuracy, it can be shown that the stabilized staggered procedure is second- - ....
order accurate. This can be done first by expanding the difference equations (9.67)-
(9.69) and using the governing coupled semidiscrete equations (9.62) where needed.
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9.4.4 Compufofionol sequence

When we ignore structuraldamping,diagonal structural massand diagonal capacitance
matrix, the stabilized computational procedure can be summarized as follows:

R"+:'2 = 3r "+I'' + QO" - fi0oCTB[fi" + _M-' (f.+1. _ Ku')] (9.78)

(Q + 3H + _20oCTM-tC)0"+I/2 R "+t'2 (9.79)

p+v2 = 62f,,+I,2 + M(u" + 6if') + _Du" + 62C0"+I/2 (9.so)

(M + 6'K)u "+I/z = p+I/2
(9.8i)

01+'

_i n+l

i_n+ I

un+ !

n+l

n+I

__ 2U,W+ I/Z -- un

= 20 "+I/2 -- O"

= M-,(f.+, + C07 +' _ K_ +,)

= fi" + 8(ii "+I +/i')

= u" + 6(fi _+' + ti_)

= Q-1(r-+, _ 00CTfi.+, _ H0.+')

= o.

(9.82)

The key for the efficiencyof the above procedure compared with other candidate

procedures is to utilize the matrix CVM-IC, which appears in the left-hand side of
(9.79) and is a symmetric banded matrix. Other possible stabilization involves

CQ-XC T into the left-hand side of (9.79), which has much larger bandwidth than
the former.

Some two-dimensional solutions of the thermal-structural interaction problems
based on the above procedure are reported in Farhat et al. [34].

9.5 APPLICATION EXAMPLES

In the preceding sections three computational methods for performing coupled-field
dynamics analyses have been surveyed. It is anticipated that as the analyst demands
more realistic models, all the single-field components, viz., structures, control, thermal

and multibody systems, may have to be included in a typical analysis. An example
would be a satellite undergoing solar panel deployment as well as attitude stabilization
and vibration control. Two examples that we include are a scenario of shuttle-based
assembly of the space station for one-cargo segment, and a vibration control of a

gen_-'ic Earth-observing platform when it is subject to a reboosting thrust.
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MB-1 MB-2

Figure 9.1 Incremental construction of space station. (Courtesy McDonnell Douglas Space Systems
Co.)

9.5.1 Manoeuwlng of the SLIMS wffh prescribed motion constraints

Figure 9.1 illustrates the assembly of the first and second modules of the space

station to be deployed and assembled. Each module is lifted by the shuttle remote

manipulator system (SRMS) from the shuttle cargo bay and deployed for the first

module and subsequently assembled into the partially assembled space station. In

order to simulate the assembly process, first, we have studied the effect of the SRMS

dynamics due to the required manoeuvring constraints. This incremental in-space

construction of the space station must meet stringent geometry, weight and stiffness

requirements as shown in Figure 9.2. The arm boom assemblies comprise two thin-

walled graphite-epoxy circular sections called the upper arm, lower arm and end

effector. These arms are connected by a shoulder joint (modelled by a universal

joint), an elbow joint (modelled by a revolute joint) and a wrist joint (modelled by

a spherical joint). The properties of the joints and arms are shown as follows (Hunter
et al. [36]):

(I) Upper arm: (2)

Young's modulus:

Eu -- 1.27 x 10"Pa
Shear modulus:

Gu = 3.18 x 10_°Pa

Length: L= = 6.38 m
Cross-section area:

A_ = 0.0022 m z
Moment of intertia:

Iu=3.16 x 10 -Sm 4

Weight: W, = 24.97kg

Lower arm:

Young's modulus:

EI = 1.09 x 10 IlPa
Shear modulus:

G_ = 3.30 x 101° Pa

Length: Li = 7.06 m
Cross-section area:

A I = 0.0015 m z
Moments of inertia:

I I---2.19 x 10 -Sm 4

Weight: W t = 24.06 kg
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Propertiesof SRMS:

• Weight = 410 Kg
• Length = 15 m

• Cross SectionArea= 0.0022 m2
• Young'sModule= 1.27 X 10u Pa
• Shear Module = 3.18 X 10z°Pa

• Density = 1.2 X 104Kg/m =

• Tip ManeuveringSpeed (withoutpayload)= 0.6 m/s

WfllST P1TCH WRIST

& LIGltlr

WRIST YAW F

ELli_M _ L_R AJIM\_ r\ENO [tFF
NT ENO [ FECTOR

& ,ANrrlLT g_rr ,O_d \ I _"_

LDER PtTI_T JOIHT MPM ° MAN •_t.ATOA I_SlTI ONING ME O4 J_qSa4
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1_ _ -ItTT_ INTERF&Cl iS AT I_
_ltON 0P _ ON LONGEIqO_

Figure 9.2 Shuttle remote manipulator system [34].

(3) End effector:

Length: L, = 1.82 m
End effector weight:
W=-- I07.I4kg

(4) Joint weights:
Shoulder joint weight:
W, = 117.I3 kg
Elbow joint weight:
W=l = 53.12 kg
Wrist joint weight:
W, = 84.44 kg.

The effect of the motion constraints to the orbital motion stabili W can be assessed

by modelling (1) both the space shuttle and the SRMS modeled to be rigid, (2) the
shuttle to be rigid and the SRMS as a flexible beam (discretized into 4 elements and

5 nodal points). By imposing angular velocity (a cubic type) at the tip of the SRMS
(Figure 9.3), the manipulator will slew through 90 ° with respect to the space shuttle.
Figures 9.4 and 9.5 illustrate the pitching angles of the rigid and flexible SRMS, and
Figure 9.6 shows the angular velocity of the rigid and flexible SRMS. Note that the
terminal velocities of the flexible case are non-zero, implying that the SRMS

manoeuvring would trigger vibrations on the space shuttle modules after assembly.
To overcome this difficulty, a more refined SRMS manoeuvring motion is necessary
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Translational Velocity Imposed at the Tip of SRM$
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Figure 9.7 Imposed translational and angular moHons at the tip of SRMS.
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as described in Chiou et al. [37]. By adopting the refined starling and stopping
conditions, the in-space construction of the space station can be divided into the
following stages:

1. manoeuvring of the SRMS to the position where its end effector is ready to
attach the space structure which is lying in the shuttle cargo bay;

2. contact/impact when the end effector of the SRMS collides with the space
structure;

3. manoeuvring of the S1LMS with the space structure to attach to another space
structure which is floating in space;

4. contact/impacf when the SRMS with the space structure collides with another
space structure in space.

For the first stage, the motion constraints for the tip of the SRMS are given by
Figure 9.7 where 25 seconds of manoeuwing time is used to place the end effec_or
of the SRMS to the position where the space s_ucture/payload is located. As

indicated in Figures 9.8 and 9.9, the anguIar velocity vectors for the upper arm and
lower arm of I:he rigid and flexible SRMS experience almost the same behaviour in
terms of trends and magnitudes which prove that the present motion constraints are

valid in manoeuvring the rigid and flexible SRMS. At the second stage, where the
contact/impact has occurred, the end effector of the SRMS is approaching the
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structure with velocity equal to -0.01 m/s (Figure 9.10(a)). When two bodies make
contact at 25 s, the velocity of the end effector drops from -0.01 m/s to 0.0018 m/s
to almost 0 m/s in less than one second of contact/impact time. From Figure 9.10(b),
the contact/impact provides a peak acceleration (-2.4 m/s z) on the end effector
which eventually dies down because of the large mass ratio between the end effector
and the structure. At the third stage, the SRMS lifts the structure with a motion

constraint that is given by Figure 9.I1. The purpose of this motion constraint is to
manoeuvre the structure into the position where the previously existing structure is
located so that the assembly of two structures can take place via contact/impact.
From Figures 9.12 and 9.13, even though the angular velocities of the flexible SRMS
still maintain the trends as in the rigid SRMS case, the high vibration modes can
easily be seen as the stopping conditions of the flexible SRMS are applied.
Consequently, due to these vibrations, the non-zero terminal velocities have occurred,

which makes the assembly of the two structures very difficult to carry out. In
condusion, since the current motion constraints cannot provide the zero terminal
velocities for the flexible SRMS, the control strategy in damping out these vibrations
needs to be studied in order to proceed to the final stage of the present construction
process. In Figure 9.I4, the contact/impact of the fourth stage has been carried out

.....by using the rigid SRMS model that the velocity of the approaching structure is .......

-0.01 m/s which produces of accelerations for both assembling structures during
1.8 s of contact/impact time. Note that after two seconds of contact/impact, both
structures are traveling with the same velocity as indicated in Figure 9.I4(a).
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9.5.2 Control of earlh-observing platform

The computational efficiency achieved by the partitioned solution procedure as
compared with the conventional solution method is sketched out in Figure 9.I5.
Assumed in the construction of the chart are the ratio of the bandwidth and the
stiffness matrix to be 0.2, the number of the actuator and that of the sensor to be
the same, and the ratio of the structural degrees of freedom and those of the actuator

to be 0.1. Note that, given a real-time processing computer that can perform a wall-
clock rate of 200 samples/second command and control, the conventional method
can at most handle the real time control of a simple beam articulation, whereas the

partitioned method can handle the real-time control of complex truss-beam vibrations.
For nonlinear problems, the advantages of the partitioned method is more pronounced,
as can be seen from the chart.

The partitioned CSI simulation procedure as derived in (9.46) has been

implemented as a stand-alone package (Park et aI. [38]). The present software
implementation emphasizes the use of the widely available sequential and paralled
analysis modules specially developed for the solution of structural dynamics equations.
Note that the solution algorithm for both the structural system and the state estimator
is the same, hence the software module, provided the right hand terms are treated
as applied forces. Although the stabilized form of the controller and the filtered

measurements are solved in a coupled manner, their size in general is substantially
smaller, typically a fraction of the size of the structural system for large-scale
problems.

Figure 9.16 illustrates a test-bed evolutionary model of an Earth-pointing satellite.
Eighteen actuators and 18 sensors are applied to the system (see Figure 9.16 for
their locations) for vibration control and their locations are provided in Tables 9.1

and 9.2. Figures 9.17-9.I9 are representative of the responses for open-loop, direct
output feedback, and dynamically compensated case does drift away initially even
though the settling time is about the same as that by the direct output feedback
case. Howev_-, the sensor outputs are assumed to be noise-flee in these two numerical

experiments. Further simulations with the present procedure should shed light on
the performance of dynamically compensated feedback systems or large-scale systems
as they are computationatly more feasible than heretofore possible.

Tables 9_ and 9.4 illustrate the computational overhead associated with the direct

output feec_=_ vs. the use of a dynamic compensation scheme by the output present
Kalman filt_g equations, compared in those tables are for two simpler tests cases,
viz., a 3-d.o,.:. system and a truss beam model. In the numerical experiments herein,
we have rel/ed on the Matlab software package for the synthesis of both the control
law gains a,-_ the discrete Kalman filter gain matrices. Results of the full state

feedback CF_3 utilizing a direct feedback vs a dynamically compensated feedback
based on &e Kamlan filter (K. Filter) indicate that they become competitive as the
size of the _-_xtel increases. Reported in those two tables are also the effects of

various irr_7"e=aentation versions, from a nominal code (version AI) to a fully,
parallelized -.-_'sion on a shared memory machine (allied with 8 processors). The

present num,_--.cal results indicate that CPU requirements for dynamically compensated
CSI simula_,-x-_ would in general require about three times that of a typical structure-
only tram_--_ analysis. It should be mentioned that even though there is a slight



9.5 APPUCAI"iON EXAMPLES 293

IJJ W LLI UJ ttJ,,+, .+, .....

z_

_J

UJ

zt_
,P4

o_

bO



294 TIME I_P.AllON MFrI..IODS FOR SYSTEMDYNAMICS

EARTH POINTING SATELLITE DESIGN PROBLEM

75m--_ 15 m

5996_ 97

Hoop

Figure 9.16 A generic Earth-pointing satellite.

Table 9.1 Actuator placement for EPS

example problem.

Actuator Node ComponenL

1 97 z

2 97 z

3 96 z

4 96 z

5 65 y

6 68 y

7 59 g

8 62 y

9 45 y

I0 45 z

I1 70 y

I2 70 z

I3 95 z

I4 95 y
15 95 z

z6 9s 4,,

28 95

increase of total CPU units from the compiler optimized sequential run to the parallel
case, the actual run-clock time on the parallel machine is about one-eighth of the

sequential case.
To conclude, it is seen that the use of the present second-order discrete Kalman
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Table 9.2 Sensor placement for EPS example
problem

Sensor Type Node Component

I Rate 97 x

2 Rate 97 z

3 Rate 96 x

4 Rate 96 z

5 Rate 65 y

6 Rate 68 y

7 Rate 59 y

8 Rate 62 y

9 Rate 45 y

10 Rate 45 z

II Rate 70 y

12 Rate 70 z

I3 Position 95 x

14 Position 95 y

15 Position 95 z

I6 Position 95 _b,

I7 Position 95 dt

18 Position 95

EPS7 Model: Open Loop Transient Response

2.0

O

X 1.4

i 0.8

0.2

-0.4

-1.0

0.0

uy (45)

: ,, : , ,:: , ; .= x( )

2.0 4.0 6.0 8.0 10.0

....... Time,-sec ......

Figure 9.17 Open loop transient response.



296 TIME INTEGRATIONMETHODS FOR SYSTEMDYNAMICS

e

O

N

i
8
o

o
@

EPS7 Model: Full State Feedback Response

2.0

Uy (45)

1.4

0.8

0.2

-0.4

Ux (45)

- .i l. % ."

.....::,,:,:
i::::::::: :::: :::..'.,,
,..4. o .t....._; . -

::: :::; :," ;. r• ,* ,

_::. Uz(4S)'=:' '
-°

0.0 2.0 4.0 6.0 8.0

Time, sec

Figure 9.18 Full state feedback response.

I0.0

EPS7 Model: Controlled Response w/Kalman Filter

1.4

i 0.8
0.2

,-4

-0.4

-1.0

Uy (45)

:':'" .....

I I I I I I I [ I

0.0 2.0 4.0 6.0 8.0 10.0

Time, 3ec

Figure 9.19 Dynamically compensated response via Kalman filter.
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Table 9.3 CPU resultsfor versionsof ACSIS.
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Model

(AI) (A2) (A3)

Problem Nominal Compiler Parallel
type code optimized observer

3DOF

Spring

54 DOF
Truss

582 DOF
EPS7

Transient 6.6 2.1 2.1
FSFB 8.0 3.3 3.3

K. Filter I2.3 3.5 3.3
Transient 78.2 5.7 5.6

FSFB 97.1 9.4 10.2
K. Filter 170.7 13.0 I0.7
Transient 3506 98.6 I00.3

FSFB 7040 190.2 294.5
K. Filter n/a 284.2 312.5

Table 9.4 CPU results for ACSIS with EBE computations.

Model

(A4) (A5) (A6)
Problem E-B-E Parallel Parallel

type computation E-B-E Obs. & EBE

3 DOF Transient 3.8 3.3 3.3

Spring FSFB 4.9 4.4 4.9
K. Filter 6.6 5.6 5.0

54 DOF Transient 31.7 13.0 I3.0
Truss FSFB 35.5 16.9 35.6

K. Filter 62.6 27.3 36.2
582 DOF Transient 391.7 153.9 n/a
EPS7 FSFB 485.9 245.9 n/a

IC Filter n/a n/a n/a

filtering equations for constructing dynamically compensated control laws add

computational overhead, but is only the equivalent of open-loop transient analysis
of symmetric sparse systems of order N instead of 2N x 2N dense systems.

9.6 CLOSING REMARKS

The present survey have focused mostly on the research activities on the comput-

ational methods for multibody dynamics, control-structure interactions, and coupled

thermal-structural transients undertaken by the researchers at the Center for Space

Structures and Controls, University of Colorado. No attempt has thus been made to
indude many important advances made by researchers around the world. A notable

omission in this survey is computational methods for parallel computations, whi_

is intensely pursued by many researchers. We hope to report on the progress on
parallel computational methods at a later occasion.
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Introduction

Current practice in the design, modeling and analysis of flexible large space structures is by and large

based on the finite element method and the associated software. The resulting discrete equations of motion

for structures, both in terms of physical coordinates and of modal coordinates, are expressed in a second-

order form. As a result, the structural engineering community has been investing a considerable amount of

research and development resources to develop computer-oriented discrete modeling tools, analysis methods

and interface capabilities with design synthesis procedures; all of these exploiting the characteristics of

second-order models. Recent work in the area of structural dynamics simulation and massively-parallel

processing also rely on the second-order equation forms.

On the other hand, modern linear control theory has its roots firmly in a first-order form of the governing

differential equations, e.g., Kwakernaak and Sivan 1. Thus, several investigators have addressed the issues of

interfacing second-order structural systems and control theory based on the first-order form 2-7. As a result

of these studies, it has become straightforward for one to synthesize direct state feedback based control laws

within the framework of a first-order control theory and then to recast the resulting control laws in terms of

the second-order structural systems.

Unfortunately, controllers based on a first-order state estimator are difficult to express in a pure second-order

form because the first-order estimator implicitly incorporates an additional filter equation 7. However a recent

work by Juang and Maghami s has enabled the first-order filter gain matrices to be synthesized using only

second-order equations. To complement the second-order gain synthesis, the objective of the present paper

is to develop a second-order based simulation procedure for first-order estimators. The particular class of

first-order dynamic compensation chosen for study are the Kalman Filter based state estimators as applied to

second-order structural systems. The proposed procedure permits simulation of first-order estimators with

nearly the same solution procedure used for treating the structural dynamics equation. Hence, the reduced

size of system matrices and the computational techniques that are tailored to sparse second-order structural

systems may be employed. As will be shown, the proposed procedure hinges on discrete time integration

formulas to effectively reduce the continuous time Kalman Filter to a set of second-order difference equations.

The primary goal of the proposed procedure is the incorporation of this general form of state estimation

as a simulation tool in partitioned control-structure interaction (CSI) analyses. It is expected that Kalman

Filters for real-time control of linear time-invariant systems would be implemented in the most efficient form

available, typically a real mode-decoupled state space realization. For analytical studies of CSI systems,

however, where the objective is frequently simultaneous optimization of controls and structures as in Belvin 9,

the use of such a modal form must be weighed against the preprocessing tasks required to generate the model.

In these cases, much more flexible controllers expressed in terms of the physical coordinates instead of the

modal coordinates are sought, ones which can readily adapt to iterative changes in the structural parameters.

One such control law synthesis has been proposed and demonstrated to be effective for CSI optimization 7.

These studies did not account, however, for dynamic compensation when full state feedback control was

utilized. With the discrete Kalman Filter proposed herein, a general form of dynamic compensation can be

integrated into CSI simulation and optimization which does not impose limits on the designs of the feedback

gains or the filter gains.

The paper first reviews of the conventional first-order representation of the continuous second-order structural

equations of motion, in which the state variables are defined as the displacements variables z of the second-

order structural model and the velocities _. An examination of the corresponding first-order Kalman filtering

equations indicates that, due to the difference in the derivative of the estimated displacement (_tk) and the





estimatedvelocity(_),transformationofthefirst-orderestimatorintoanequivalentsecond-orderestimator
requiresthetimederivativeofmeasurementdata,aprocessnotrecommendedforpracticalimplementation.

Next,a transformationviaageneralizedmomentumis introduced to recast the structural equations of motion

in a general first-order setting. It is shown that discrete time numerical integration followed by reduction

of the resulting difference equations circumvents the need for the time derivative of measurements to solve

Kalman filtering equations in a second-order framework. Hence, the Kalman filter equations can be solved

using a second-order solution software package.

Subsequently, computer implementation aspects of the present second-order estimator are presented. Several

computational paths are discussed in the context of discrete and continuous time simulation. For continuous

time control simulation, an equation augmentation is introduced to exploit the symmetry and sparsity of

the attendant matrices by maintaining state dependent control and observer terms on the right-hand-side

(KHS) of the filter equations. In addition, the computational efficiency of the present second-order filter as

compared to the first-order form is presented.

Continuous Formulation of State

Estimators for Structural Systems

Linear, second-order discrete structural models can be expressed as

M_.+Dk+Kz-Bu+Gw, x(O)=zo, k(O)=ko (1)

u = --Zlz -- Z2k

with the associated measurements

z = Hlz +//2_ + v (2)

where M, D, K are the mass damping and stiffness matrices of size (N x N); z is the structural displacement

vector, (N x 1); u is the active control force (mx 1); B is a constant force distribution matrix (N x m); z

is a set of measurements (r x 1); HI and //2 are the measurement distribution matrices (r x N); ZL and

Z:_ are the control feedback gain matrices (mx N); w and v are zero-mean, white Gaussian processes with

their respective covariances Q and R; and the superscript dot designates time differentiation. In the present

study, we will restrict ourselves to the case wherein Q and R are uncorrelated with each other and the initial

conditions z0 and k0 are also themselves jointly Gaussian with known means and covariances.

The conventional representation of (1) in a first-order form is facilitated by

ZI-- Z
Mk2 = M_ - Bu + Gw- Dx2 - Kzl

(3)

which, when cast in a first-order form, can be expressed as

Eq=Fq+/)u+Ow, q---- (z, z2)T (4)z- Hq+v

where

o] [0 jo]E= , F= -K





i

0

It is well-known that the Kalman filtering equations 1°'tl for (4) can be shown to be (see, e.g., Arnold and

Laub3):

E_ = F_ + Bu + EPHTR-I_. (6)

where

_. = z- H4 , P= ' q= _.2 = _:

in which U and L are positive definite matrices, q is the state estimation vector, and the matrix P is

determined by the Riccati equation 1'3

EfaE T = FPE r + EPF 7" _ EPHT R-1HPET + _Q_T (8)

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6) to second order

form can be appreciated if one attempts to write (6) in a form introduced in (3):

a) .b) _2 =x =_l-Ll_
c) M_2 = -D_2 - K_t + Bfi + ML2_.

(9)

where

LI = (HxU + H2S)rR -x, L2 = (HiS T + H2L)7"R -1

Note from (9b) that _2 _ _l- In other words, the time derivative of the estimated displacement (_) is not

the same as the estimated velocity (_); hence, _t and z2 must be treated as two independent variables, an

important observation somehow overlooked in Hashemipour and Laub m.

Of course, although not practical, one can eliminate :c2 from (9). Assuming _1 and z2 are differentiable,

differentiate (9b) and multiply both sides by M to obtain

M_t = M_2 + MLlz (10)

Substituting M_2 from (9c) and $2 from (9b) in (10) yields

M'_z = -D(_l - Ll_.) - K_l + Bu + ML2_. + MLl_ (11)

which, upon rearrangements, becomes

M_I + Dz, + K_I = Bu+ ML2_" + MLtz + DLI_. (12)

There are two difficulties with the above second-order estimator. First, the numerical solution of (12)

involves the computation of _l when rate measurements are made. The accuracy of this computation is in

general very susceptible to errors caused in numerical differentiation of _1- Second, and most important, the

numerical evaluation of z that is required in (12) assumes that the derivative of measurement information is

available which should be avoided in practice. We now present a computational procedure that circumvents

the need for computing measurement derivatives and that enables one to construct estimators based on the

second-order model form.





Second-Order Transformation of

Continuous Kalman Filtering Equations

This section presents a transformation of the continuous time first-order Kalman filter to a discrete time set of

second-order difference equations for digital implementation. The procedure avoids the need for measurement

derivative information. In addition, the sparsity and symmetry of the original mass, damping and stiffness

matrices can be maintained• Prior to describing the numerical integration procedure, a transformation based

on generalized momenta is presented which is later used to improve computational efficiency of the equation

solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1) into a first-order

form, let us consider the following generalized momenta (see, e.g., Jensen 13 and Felippa and Park14):

a) xl=x (13)b) z2 = AM_I +Czl

where A and C are constant matrices to be chosen. Note that AM should be nonsingular in order to obtain

an equivalent form of (1). Time differentiation of (13b) yields

_ = AM_t + C_t (14)

Substituting (1) via (13a) into (14), one obtains

i_2 = A(Bu + Gw) - (AD - C)_t - AKxt

Finally, pairing of (13b) and (15) gives the following first-order form:

•

The associated Kalman filtering equation can be shown to be of the following form:

• 0

where

LI -- (/[1U +/f2S)TR -1, L_ = (/_isT 4-fI2L)TR -I

and /tl and /_2 correspond to a modified form of measurements expressed as

z = H,* + H2_: = Hl*, +/I_*2

where

H, = H1- H_M-IA-1C, ft2 = H2M-IA -1

(15)

(16)

(17)

(18)





Clearly,asin theconventionalfirst-orderform(9),kt andk2 in (17) are now two independent variables.

Specifically, the case of A = M -l and C = 0 corresponds to (3) with z2 = kt. However, as we shall see

below, the Kalman filtering equations based on the generalized momenta (13) offer several computational

advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination of @l in order

to obtain a second-order equation, then performs the numerical solution of the resulting equation. This

approach has the disadvantage of having to deal with the time derivative of measurement data. To avoid

this, we will first integrate numerically the associated Kalman filtering equation (17).

The direct time integration formula we propose to employ is a mid-point version of the trapezoidal rule:

"1,, - ,,
(19)

where the superscript n denotes the discrete time interval t" = nh, h is the time increment and 6 = hi2.

It should be noted that we have chosen the trapezoidal rule due to its unconditional stability and high

accuracy while it does not introduce any numerical damping (see, for example, Dahlquist 15 and Parki_).

Contamination of damping from numerical dissipation can not only adversely affect the solution accuracy

but lead to misinterpretation of the simulation results.

Time discretization of (17) by (19a) at the n + 1/2 time step yields

AD C @_+t/2 z_- AK. "[ #,_+,12

=6 lAD C'
(20)

_ ABu"+xl 2 ._

The above difference equations require the solution of matrix equations of 2N variables, namely, in terms

of the two variables @g+t/2 and _t +1/_, each with a size of N. TO reduce the above coupled equations of

order 2N into the corresponding ones of order N, we proceed in the following way by exploiting the nature

of parametric matrices of A and C as introduced in (13). To this end, we write out (20) as two coupled

difference equations as follows:

AM(_ +'12 - i:'_) + 6(C.9_ +'12 - @;+x12)

= 6AMLx_.'_+II 2

(ao - C)(_7 +tl' - i:'_) + (@,_+,12 _ _:,_) + 6AK_?+'I'

= df(AD - C)LII '_+112 + _L220+1/2 + 6ABu "+x12

(21)

(22)

Multiplying (22) by 6 and adding the resulting equation to (21) yields

A(M + 6D + 62K)_ +'12 = (AM + 6(AD - C)):_'_ + 6@'_

+{6AM Lt + 6_( AD - C)Lt + 62 L_ } _''+11_ + 62 ABu "+112 (23)





Of several possible choices for matrices A and B, we will examine the following two specific cases:

a) A=I, C=D (24)b) A=M -1, C=0

where the mass matrix M is nonsingular due to its physically positive definite nature since the kinetic energy

of structural system is positive for any admissable motion. It is noted that the above two choices, although

mathematically equivalent, lead to different computational implementations as discussed below.

The choice of (24a) reduces .(23) to:

(M + _D + 6_K)_.'_ +112 = M:_'_ + 5]c'_ + 62Bu n+l12

+6{ML, + ,5L2}_. "+_/2 (25)

so that once _,+t/2 is computed, _+t/2 is obtained from (22) rewritten as

_n+l/2 *z2 = ='_+ 6_" - aK_:';+'/2 (26)

where

_'_ = Bun+ll 2 + L_,'_+t/_ (27)

which is already computed in order to construct the right-hand side of (25). Hence, K_._ +112 is the only

additional computation needed to obtain _+1/2. It is noted that neither any numerical differentiation nor

matrix inversion is required in computing _+1/2. This has been achieved through the introduction of the

general transformation (13) and the particular choice of the parameter matrices given by (24a).

On the other hand, if one chooses the conventional representation (24b), the solution of i_+1/2 is obtained

from (23)

(M + ,50 + 62 K)_ +112 = (M + 5D)_? + _M_c_

+_{(M + _O)Lt + ,5Mi,2}_ +t12 + ,52Bun+l/_ (28)

Once i_+1/_ is obtained, :_+1/_ can be computed either by

..+x12 = (_+I/x _ :_)15 - Lt£ "+l/_ (29):C 2

:n+l/2
which is not accurate due to the numerical differentiation to obtain z 1 , or by (22)

.n+1/2 -nx 2 = x_ + 6_n - _M-tK_ +112-

M-t D(_c_ +112 - _c_) + 6M-I DL_ _.''+_1_ (30)

which involves two additional matrix-vector multiplications, when D # 0, as compared with the choice of

A = I and C' = D. Thus (24a) is the preferred representation in a first-order form of the second-order

structural dynamics equations (1) and is used in the remainder of this work.

Deeoupling Of Difference Equations

We have seen in the previous section, instead of solving the first-order Kalman filtering equations of 2n

variables for the structural dynamics systems (1), the solution of the implicit time-discrete estimator equation

(25) of n variables can potentially offer a substantial computational saving by exploiting the reduced size





andsparsityof M, D and K. This assumes that i "+1/2 and u"+t/2 are available, which is not the case since

at the n th time step

= _ (31)

= _ _ (32)

requires both _+l/z and ig+l/z even if Z n+l/2 is assumed to be known from measurements or by solution

of (1). Note in (32), the control gain matrices are transformed by

ZI = Z1 - Z2M-1A-IC, Z_ = Z2 M-1A-1

There are two distinct approaches to decouple (25) and (26) as described in the following sections.

Discrete Time Update

For systems utilizing discrete-time (i.e. sample and hold) control, equations (31) and (32) become

u"+112 "" -Z,xl- "" - 22_'_ (33)

_,,+ ll_ __ z" - glx l_"" -- [-I_ (34)

The time integration step size of the estimator must then be equal to the sample rate of the control, while the

continuous structural equations may also be integrated at the same rate or at some fraction of the sampling

rate for simulation accuracy considerations. For the present purposes, we have assumed that the sampling

interval is the same as the integration time stepsize.

Discrete time simulation is quite simple to implement as the control force and state corrections are treated

with no approximation on the right-hand-side (RHS) of (25) and (26). Should continuous time simulation

be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one must rearrange

(25) and (26) so that the terms involving _}_+l/z and _+_/2 are augmented to the left-hand-side (LHS) of

the equations. However, this augmentation into the solution matrix (M + 6D +/_2K) would destroy the

computational advantages of the matrix sparsity and symmetry. Thus, a partitioned solution procedure has

been developed for continuons time simulation as described in Park and Belvin 17. The procedure, briefly

outlined herein, maintains the control force and state correction on the RHS of the equations as follows.

First, _}_,+i12 and i_+1/2 are predicted by

_.+,/2 -. -.+,/2 - (35)

However, instead of direct substitution of the above predicted quantity to obtain u'_ +112 and 2'_+112 based

on (31) and (32), equation augmentations are introduced to improve the accuracy of u'_ +_/2 and 2_ +_/2.

Of several augmentation procedures that are applicable to construct discrete filters for the computations of

u "+_/2 and _.,+_/2, we substitute (26) into (31) and (32) to obtain

l = - -
_Bu"+Xl2 + 'sL_"*+q2) (36)

2,*+x/2 = z'*+'12 _ BL_:_*+x/:__

ff_(_'_ - 5K_ +_I_ + 6Bu "+_I_ + $L_ ""+_lz)





Rearranging the above coupled equations, one obtains

_ _ un+t/2[(I + tf2;B) SZ2L2

- - (37)
_ - _ 6,q2ir)  j

which corresponds to a first order filter to reduce the errors in computing _2 = M_: + D_. A second-order

discrete filter for computing u and _ can be obtained by differentiating u and _ to obtain

(38)

and then substituting _:t and _ from (17). Subsequently, (19) is applied to integrate the equations for u

and _' which yields

_(H_B + 6£r_M'-_B) I + _//_(L_ + _M-IL2) + _/-7_L2 r,-+_/2 =

• • 1/-n r rF _n+l/2 n _n+l/2_ __ ._ r,- -n+l/2 ",

+ . / + } (391

The net effects of this augmentation are to filter out the errors committed in estimating both _ and &z.

Solution of (39) for un+_/_ and _,+_/2 permits (25) and (26) to be solved in continuous time for :_+_/z and

_+_/_. Subsequently, (19b) is used for i_,+t and _+_.

The preceding augmentation (39). leads to an accurate estimate of the control force and state estimation error

correction at the (n+1/2) time step. Although (39) involves the solution of an additional algebraic equation,

the equation size is relatively small ( size = number of actuators (m) plus the number of measurements (r)

). Thus, (39) is an efficient method for continuous time simulation of the Kalman filter equations provided

the size of (39) is significantly lower than the first order form of (4). The next section discusses the relative

efficiency of the present method and the conventional first order solution. More details on the equation

augmentation procedure (39) may be found in Park and Belvin _7.

Finally, it is noted that by following a similar time discretization procedure adopted for computing :_+t/2

._n+].12and _ , the structural dynamics equation (1) can be solved by

(M +/fD + &_K)z_ +'/_ = Mx? + _x'_ + 5_Bu "+'1_x_ +xl_ = z'_ + tfBu "+_1_ - _liz_ +tl_
(40)

Thus, numerical solutions of the structural dynamics equation (1) and the filter equation (20) can be carried

out within the second-order solution context, thus realizing substantial computational simplicity compared

with the solution of first-order systems of equations (4) and the corresponding first-order estimator equations

(6)-

It is emphasized that the solutions of both the structural displacement x and the reconstructed displacement

employ the same solution matrix, (M + _fD +/f_K). The computational stability of the present procedure

can be examined as investigated in Park _s and Park and Felippa _p°. The result, when applied to the present

case, can be stated as

_max _< 1 (41)





where Amax is the maximum eigenvalue of

(A2I + A2_B + Z1M-'B)y = 0 (42)

Typically the control laws are formulated in terms of low-frequency response components, viz.,

S oc argo (43)

for the displacement feedback case where G is a projection matrix that extracts only low-frequency compo-

nents from the structural stiffness matrix. Hence, ,_max is in practice several orders of magnitude smaller

than pmax of the structural dynamics eigenvalue problem:

pMy = Ky (44)

Considering that a typical explicit algorithm has its stability limit Pmax " h < 2, the maximum step size

allowed by (42) is in fact several orders of magnitude larger than allowed by any explicit algorithm.

Computational Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the potential gain in com-

putational efficiency due to the beneficial nature of matrix sparsity and symmetry in the solution matrix

of the second-order estimator equations. There is an overhead to be paid for the present second-order pro-

cedure, that is, the additional computations introduced to minimize the control force and state estimation

error terms on the right-hand-side of the resulting discrete equations. The following paragraphs show the

second-order solution is most advantageous for estimator models with sparse coefficient matrices M, D and

K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39) may be performed

using a time discretization as given by (19). For linear time invariant (LTI) systems, the solution matrix is

decomposed once and subsequently upper and lower triangular system solutions are performed to compute

the estimator state at each time step. Thus, the computations required at each time step result from

calculation of the RMS and subsequent triangular system solutions. For the results that follow, the number

of floating point operations are estimated for LTI systems of order O(N). In addition, it is assumed that the

mass, damping and stiffness matrices (M, D and K) are symmetric and banded with bandwidth aN, where

0 < _ < (0.5- !)2N "

The first-order Kalman filter equation (6) requires (4N 2 + 2Nr + O(N)) operations at each time step. The

discrete time second-order Kalman filter solution (25-26, 33-34) require (Sa2N2+2aN2+3Nm+4Nr+O(N))

operations and the continuous time second-order Kalman filter (25-26, 39) require (8aN 2 + 2aN 2 + 5Nm +

6Nr + (r + m) 2 + O(N)) operations at each time step. To examine the relative efficiency of the first-order

and second-order forms, several cases are presented as follows.

First, a worst ease condition is examined whereby M,D and K are fully populated (a = 0.5 - 2--_) and

r = m - N. Only for this extreme condition with large numbers of sensors and actuators relative to the

system order, the first order Kalman filter becomes somewhat more efficient than the second-order discrete

Kalman filter solution presente d herein.

For typical structural systems, M and K are almost always banded. In addition, the number of sensors

and actuators is usually small compared to the system order N. If the number of actuators (m) and the
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numberof measurements(r) areproportionalto thebandwidth( r = m = aN), thesecond-orderdiscrete
Kalman filtering equations become computational attractive as long as _ < 0.394. It should be noted that

the larger the size of the structural systems, the smaller the bandwidth becomes, with the range of c_ to be

0.05 <_ a _< 0.15.

Finally, for the special case of modal-based structural models, one has a --* 0. For this case, as long as

sensors and actuators are sufficiently smaller than the modal degrees of freedom, the present second-order

state estimator can be substantially more efficient than the classical first-order form. This is because the

conventional state space-based estimator must deal with a fully coupled nonsymmetric 2N × 2N system

whereas the present second-order estimator deals with a diagonal N × N system. A more detailed discussion

can be found in Belvin 9.

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been implemented along

with the stabilized form of the controller u and the filtered measurements _. in such a way the estimator

computational module can be interfaced with the partitioned control-structure interaction simulation package

developed previously by Belying, Park and Beivin 17 Alvin and Park 21. It is emphasized that the solution

procedure of the present second-order discrete Kalman filtering equations (25) and (26) follows exactly the

same steps as required in the solution of symmetric, sparse structural systems. It is this attribute that makes

the present discrete filter attractive from the simulation viewpoint. For a succinct comparison between the

present CSI simulation procedure and conventional state space-based simulation procedures, the equations

that need to be implemented in both of the procedures are summarized below.

Partitioned Control-Structure Interaction Equations

The partitioned procedure for simulating the control-structure interaction problems developed in Belvin 9 and

Park and Belvin 17 exploits the second-order diferential equation form when.ever possible as shown below.

Structure: a)
Sensor Output: b)

Estimator: c)

Control Force: d)

Estimation Error: e)

Mcl+ Dcl + Kq = f+Bu+ Gw

q(O) = qo, 4(0) = qo

z=Hx+v

_(0) = 0, _(0) = f(0) + Bu(0)

h + F_M-IBu = F_(M-_p + L27) + F,4

4+ H_L_,= _- H,M-'(p- Bu)- Hdq

(45)

In addition, notice that the control laws (u) and the estimation error ('t) are parabolically stabilized and

solved in a separate software module from the estimator and the structural analyzers, thus effectively ren-

dering a computaionally efficient and accurate procedure.

lI





Conventional Control-StructureInteraction Equatioons

In contrast to the partitioned procedure summarized above, conventional control-structure interaction simu-

lation employs a first-order differential equation form as shown below, thus requiring the solution of 2n x 2n)-

system equations for structures and the observer. In addition, the control laws and the estimation errror are

not stabilized, which can give rise to an accumulation of computational errors.

where

and

Structure: a) _ = Ax % gf+ I_u % (;w

x(O)= xo

Sensor Output: b) z = Hx + v

Estimator: c) _ = A:_ + gf+ 13u + L'y

_(0) = 0

Control Force: d) u = -F_

Estimation Error: c) _/= z- H_

[o_,1H=[H. Hol, L= '

-M-IK - ID ' M '

(4s)

Numerical Experiments

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and 2 fixed for

cantilevered motions. Actuator and sensor locations, as well as their orientation, are given in Table 1.

In the numerical experiments reported herein, wc have relied on the Matlab software pemkage 22 for the

synthesis of both the control law gains and the discrete Kalman filter gain matrices. Figures 2, 3 and 4

show the vertical displacement time response at node 9 for open-loop, full state feedback, and dynamically

compensated feedback cases, respectively. In the present pepper, a full state feedback corresponds to the case

for which the number of sensors are the same as the total system degrees of freedom whereas the dynamically

compensated case corresopnds to a smaller number of sensors as compared with the total system degrees of

freedom. Note the effectiveness of the dynamically compensated feedback case with four actuators and six

sensors as indicated in Table 1 by the present second-order discrete Kalman filtering equations as compared

with the full state feedback cases.

Figure 5 illustrates a testbed model of an Earth-pointing satellite. For vibration control, 18 actuators and

18 sensors arc configured throughout the system; their locations are provided in Tables 2 and 3. Figures 6, 7,

and 8 are a representative of the responses for open-loop, full state feedback, and dynamically compensated

cases, respectively. In both examples, the estimator states are the estimated physical displacemcnts and

generalized momenta as previously developed, and thus the number of effective states is equal to 2N, where

N is the number of physical displacement variables of the second-order structural system. Therefore, the

Kalman filter for the truss example has 108 statcs, and the filter for the satellite has 1164 states, a substantial

increase over typical estimator orders for such systems. Further simulations with the present procedure should
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shedlightontheperformanceofdynamicallycompensatedfeedbacksystemsforlarge-scalesystemsasthey
arecomputationallymorefeasiblethanheretoforepossible.

Thecomputational overhead associated with the full state feedback vs. the use of a dynamic compensation

scheme by the present Kalman filtering equations is reported in Table 4. It is seen that the use of the

present second-order discrete Kalman filtering equations for constructing dynamically compensated control

laws adds computational overhead, only an equivalent of open-loop transient analysis of symmetric sparse

systems of order N instead of 2N x 2N dense systems. This is evidenced in Table 4 in that the normalized

CPU time for the dynamically compensated case (designated as K. Filter) is 63.16 whereas the total CPUs

for the full state feedback case (FSFB) plus that of the open loop dynamic response (Transient) is 64.18.

Summary

The present paper has addressed the advantageous features of employing the same direct time integration al-

gorithm for solving the structural dynamics equations and for integrating the associated continuous Kalman

filtering equations. The time discretization of the resulting Kalman filtering equations is further facilitated

by employing a canonical first-order form via a generalized momenta. When used in conjunction with the

previously developed stabilized form of control laws in Park and Belvin 1T, the present procedure offers a sub-

stantial computational advantage over the simulation methods based on a first-order form when computing

with large (i.e. nearly full system dynamics) and sparse estimator models.

In order to minimize the deleterious effect of numerical damping and phase distortion in the solution of the

discrete Kalman filtering equations, the trapezoidal rule is employed. This is due to the wellknown fact that

the trapezoidal rule conserves the system energy with minimum phase error among all the time integration

formulas of second-order accuracy ls'16

Computational stability of the present solution method for the filter equation has been assessed based on

the stability analysis result of partitioned solution procedures Is. To obtain a sharper estimate of the stable

integration step size, a more rigorous computational stability analysis is being carried out and will be reported

in the future.
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Table la

Actuator Placement for Truss Example Problem

Actuator Node Component

1 2 y

2 18 y

3 9 y

4 9 x

Table lb

Sensor Placement for Truss Example Problem

Sensor Type Node Component

1 Rate 2 y

2 Rate 18 y

3 Rate 9 y

4 Rate. 9 z

5 Position 9 y

6 Position 9 x





Table 2

Actuator Placement for EPS Example Problem

Actuator Node Component

1 97 x

2 97 z

3 96 x

4 96 z

5 65 y

6 68 y

7 59 y

8 62 y

9 45 y

10 45 z

11 70 y

12 70 z

13 95 x

14 95 y

15 95 z

95 Cz
17 95 Cy

18 95 ¢,





Table 3

Sensor Placement for EPS Example Problem

Sensor Type Node Component

1 Rate 97 x

2 Rate 97 z

3 Rate 96 x

4 Rate 96 z

5 Rate 65 y

6 Rate 68 y

7 Rate 59 y

8 Rate 62 y

9 Rate 45 y

10 Rate 45 z

11 Rate 70 y

12 Rate 70 z

13 Position 95 x

14 Position 95 y

15 Position 95 z

16 Position 95 ¢_

17 Position 95 Cy

18 Position 95 Cz





Table 4

CPU Results for ACSIS Sequential and Parallel Versions

Problem

Model Type Sequential Parallel

54 DOF Transient 4.5 5.6

Truss FSFB 9.4 10.2

K. Filter 13.0 10.7

582 DOF Transient 98.6 100.3

EPS7 FSFB 190.2 294.5

K. Filter 284.2 321.5
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Figure 1: TRUSS BEAM PROBLEM
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Dynamics of Adaptive Structures: Design through Simulations
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1. INTRODUCTION

Mechanisms and static stress analyses have long been the major considerations in the

design of many articulated structures or adaptive structures in the past. However, high-

performance requirements on these structures have added the dynamics considerations

as a new added design criterion in recent years. This is especially true in the design of

adaptive or deployable space structures that involve the combined phenomena of the

orbital mechanics, structural configuration changes and flexible vibrations in a coupled

manner. Hence, little attention has been given to, in the design of reconfigurable flexible

space structures, the influence of the accompanying dynamics during the maneuvering

as an integral part of the design requirements.

The adaptations of human bodies, animals and bacteria to spatial dynamical motions

have been previously studied[I-3]. Recently, several investigators developed the so-

called angular momentum preserving rotational maneuvering control algorithms and

applied them to robotics and spacecraft attitude controls[4-6]. As a result, the intrinsic

adaptations of the momentum conservation (violation for that matter) laws by spring

board divers, ice skaters as well as gymnasts are well understood, which have been

subsequently utilized for the design of space robotics maneuvering and space rendezvous

scenarios. These studies have dealt mostly with rigid bodies linked by frictionless joints

and focused on the development of various control algorithms for nonholonomic rigid

dynamical system.

The use of a helical bi-morph actuator/sensor concept[7/ by mimicking the change of

hefical waveform in bacterial flagella is perhaps the first application of bacterial motions

(living species) to longitudinal deployment of space structures. However, no dynamical

considerations were analyzed to explain the waveform change mechanisms[3, 7]. The

objective of the present paper is to review various deployment concepts from the dy-

namics point of view and introduce the dynamical considerations from the outset as part

of design considerations. Specifically, the impact of the incorporation of the combined

static mechanisms and dynamic design considerations on the deployment performance

during the reconfiguration stage is studied in terms of improved controllability, maneu-

vering duration and joint singularity index. It is shown that intermediate configurations

during articulations play an important role for improved joint mechanisms design and

overall structural deployability.





2. EXAMPLES OF ADAPTIVE STRUCTURES

2.1 Bacterial Flagella

In studying the chemotaxis of bacteria such as Salmonella, scientists discovered that

their motions are intertwined with smooth swimming interrupted by short periods of

tumbling[3]. In particular, the change in waveforms do not follow the intuitive way,

vz., from one normal wave form to the adjacent discrete wave state. Instead, the

transition of the waveform jump from one wave sometimes to its half-length wave.

Calladine[3] conjectured that the intermittent existence of bi-stable subunits along

the helical flagella structure are responsible for the formation of partly stable curly

right-handed helices. It is these bi-stable subunits that cause jumps in the waveform

formation.
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Fig. 1 Possible Waveforms of Flagella of Salmonella

From the mechanical deployment perspectives, the large motions due to the jumps in

waveform change in bacterial flagella pose the following questions: 1) how can such

large motions be possible what are the sources of the torques that make such large





motions possible?;2) are thosemotions createdby minimizing the energyrequirements
or by triggering unstable motion paths so that the energy need remains minimal?;
3) can the large motion phenomenonbe explained solely by quasi-static equilibrium
considerationsor be explainedonly by the dynamical considerations?

Experiments aswell asanalytical studies[3]sofar identified twelve polymorphic helical
forms with a tubular chainsof 20nanometerin diameter asshown in Fig. 1.

2.2 R_com_igurable Truss Beams

Figure 2 illustrates three representative reconfigurable truss beams. The sequentially

deployable maneuvering tetrahedral beam is shown in Fig. 2a and can only be deployed

sequentially, hence can't simulate the jumps in waveform of the bacterial flagella.

Courtesy: Mikulas and Crawford[9]

Batten Actuated(345) Variable

Geometry TruSSBeam

Courtesy: NHK Pub.[10]

Fig. 2 Various Reconfigurable Truss Beams

By inserting actuator-encorder pairs into some of the truss members as shown in the

variable geometry truss (Fig. 2b), it is possible to shape the beam as desired. The

batten actuated beam as shown in Fig. 2c is perhaps the simplest reconfigurable truss.

In both the last two cases, the actuators may be viewed as bi-stable subunits which,

unfike for the case of tumbling motions in flagella case, do require control forces.





3. NONHOLONOMICALLY CONTROLLED B.ECONFIGURABLE STRUCTURES

The equations of motion for nonholonomically controlled reconfigurable structures can

be written as

= r(0 - S(q) + B_ + C;_ (1)
p = Mcl + D(q)

with the constraints:
8_K

OK(q) =0 C=_
0q (2)

O'_ K
•N(q)=O B= 0--_-

In the above equations, p is the generalized momenta, f is the applied force, s is the

internal force, u and A are the nonholonomic and kinematic contraint forces, M is the

generalized inertia matrix, D is the damping operator, and _K(q) and _N(q) are system
kinematic and nonholonomic constraint equations. It should be noted that both u and

A can be augmented with active control forces, when necessary.

Figure 3 illustrates a design example that involves the sizing of the double moemnt

gyros[Ill for effecting the maneuvering as well as the necessary vibration control. The

moment gyros can in turn be made of from micro to mini sizes [12], depending upon

the torque requirements. In this particular example, the task is to shape the artic-

ulated straight beam to form an hexagonal polygonal structure in space or can be

shaped to form a helix if desired. Therefore, the role of gyros is to perform triple tasks

concurrently: maneuvering, vibration control, and if necessary bi-stable units for easy

articulation.

o G_inballed Gyro

/

Control Moment Gyro

G • 8 _J- ID AT

Fig. 3 Articulation of Beam-Like Structure via Control Moment Gyros





It should be mentioned that, for three rigidly linked planar maneuvering that con-

serves the angular momentum, the problem has been analyzed in [6]. It is for flexible

cases the solution can be complicated. These and solutions of other related problems

will be reported at the conference.
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